A Story of Units ${ }^{\circledR}$

Eureka Math ${ }^{\text {m" }}$

Grade 5, Module 2

Student File_B

Contains Sprint and Fluency, Exit Ticket, and Assessment Materials

Published by the non-profit Great Minds.
Copyright © 2015 Great Minds. All rights reserved. No part of this work may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying or information storage and retrieval systems - without written permission from the copyright holder. "Great Minds" and "Eureka Math" are registered trademarks of Great Minds.
Printed in the U.S.A.
This book may be purchased from the publisher at eureka-math.org
$\begin{array}{llllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

Sprint and Fluency Packet

A

Number Correct: \qquad

Multiply by 10, 100, and 1,000

1.	$9 \times 10=$	
2.	$9 \times 100=$	
3.	$9 \times 1,000=$	
4.	$8 \times 10=$	
5.	$80 \times 10=$	
6.	$80 \times 100=$	
7.	$80 \times 1,000=$	
8.	$7 \times 10=$	
9.	$70 \times 10=$	
10.	$700 \times 10=$	
11.	$700 \times 100=$	
12.	$700 \times 1,000=$	
13.	$2 \times 10=$	
14.	$30 \times 10=$	
15.	$32 \times 10=$	
16.	$4 \times 10=$	
17.	$50 \times 10=$	
18.	$54 \times 10=$	
19.	$37 \times 10=$	
20.	$84 \times 10=$	
21.	$84 \times 100=$	
22.	$84 \times 1,000=$	

23.	$73 \times 1,000=$	
24.	$60 \times 10=$	
25.	$600 \times 10=$	
26.	$600 \times 100=$	
27.	$65 \times 100=$	
28.	$652 \times 100=$	
29.	$342 \times 100=$	
30.	$800 \times 100=$	
31.	$800 \times 1,000=$	
32.	$860 \times 1,000=$	
33.	$867 \times 1,000=$	
34.	$492 \times 1,000=$	
35.	$34 \times 10=$	
36.	$629 \times 10=$	
37.	$94 \times 100=$	
38.	$238 \times 100=$	
39.	$47 \times 1,000=$	
40.	$294 \times 1,000=$	
41.	$174 \times 100=$	
42.	$285 \times 1,000=$	
43.	$951 \times 100=$	
44.	$129 \times 1,000=$	

Number Correct: \qquad
Improvement: \qquad
Multiply by 10, 100, and 1,000

1.	$8 \times 10=$	
2.	$8 \times 100=$	
3.	$8 \times 1,000=$	
4.	$7 \times 10=$	
5.	$70 \times 10=$	
6.	$70 \times 100=$	
7.	$70 \times 1,000=$	
8.	$6 \times 10=$	
9.	$60 \times 10=$	
10.	$600 \times 10=$	
11.	$600 \times 100=$	
12.	$600 \times 1,000=$	
13.	$3 \times 10=$	
14.	$20 \times 10=$	
15.	$23 \times 10=$	
16.	$5 \times 10=$	
17.	$40 \times 10=$	
18.	$45 \times 10=$	
19.	$73 \times 10=$	
20.	$48 \times 10=$	
21.	$48 \times 100=$	
22.	$48 \times 1,000=$	

23.	$37 \times 1,000=$	
24.	$50 \times 10=$	
25.	$500 \times 10=$	
26.	$500 \times 100=$	
27.	$56 \times 100=$	
28.	$562 \times 100=$	
29.	$432 \times 100=$	
30.	$700 \times 100=$	
31.	$700 \times 1,000=$	
32.	$760 \times 1,000=$	
33.	$765 \times 1,000=$	
34.	$942 \times 1,000=$	
35.	$74 \times 10=$	
36.	$269 \times 10=$	
37.	$49 \times 100=$	
38.	$328 \times 100=$	
39.	$37 \times 1,000=$	
40.	$924 \times 1,000=$	
41.	$147 \times 100=$	
42.	$825 \times 1,000=$	
43.	$651 \times 100=$	
44.	$192 \times 1,000=$	

Estimate and then multiply.

Estimate and then muttipl.			$29 \times 11 \approx$	23

estimate products

Solve.					
1	$5 \times 100=$		23	$5000-50=$	
2	$500-5=$		24	$50 \times 99=$	
3	$5 \times 99=$		25	$80 \times 100=$	
4	$3 \times 100=$		26	$80 \times 99=$	
5	$300-3=$		27	$60 \times 100=$	
6	$3 \times 99=$		28	$60 \times 99=$	
7	$2 \times 100=$		29	$11 \times 100=$	
8	$200-2=$		30	$1100-11=$	
9	$2 \times 99=$		31	$11 \times 99=$	
10	$6 \times 100=$		32	$21 \times 100=$	
11	$600-6=$		33	$2100-21=$	
12	$6 \times 99=$		34	$21 \times 99=$	
13	$4 \times 100=$		35	$31 \times 100=$	
14	$4 \times 99=$		36	$31 \times 99=$	
15	$7 \times 100=$		37	$71 \times 100=$	
16	$7 \times 99=$		38	$71 \times 99=$	
17	$9 \times 100=$		39	$42 \times 100=$	
18	$9 \times 99=$		40	$42 \times 99=$	
19	$8 \times 100=$		41	$53 \times 99=$	
20	$8 \times 99=$		42	$64 \times 99=$	
21	$5 \times 100=$		43	$75 \times 99=$	
22	$50 \times 100=$		44	$97 \times 99=$	

mental multiplication

A

Number Correct: \qquad

Multiply by Multiples of 10 and 100

1.	$2 \times 10=$	23.	$33 \times 20=$	
2.	$12 \times 10=$	24.	$33 \times 200=$	
3.	$12 \times 100=$	25.	$24 \times 10=$	
4.	$4 \times 10=$	26.	$24 \times 20=$	
5.	$34 \times 10=$	27.	$24 \times 100=$	
6.	$34 \times 100=$	28.	$24 \times 200=$	
7.	$7 \times 10=$	29.	$23 \times 30=$	
8.	$27 \times 10=$	30.	$23 \times 300=$	
9.	$27 \times 100=$	31.	$71 \times 2=$	
10.	$3 \times 10=$	32.	$71 \times 20=$	
11.	$3 \times 2=$	33.	$14 \times 2=$	
12.	$3 \times 20=$	34.	$14 \times 3=$	
13.	$13 \times 10=$	35.	$14 \times 30=$	
14.	$13 \times 2=$	36.	$14 \times 300=$	
15.	$13 \times 20=$	37.	$82 \times 20=$	
16.	$13 \times 100=$	38.	$15 \times 300=$	
17.	$13 \times 200=$	39.	$71 \times 600=$	
18.	$2 \times 4=$	40.	$18 \times 40=$	
19.	$22 \times 4=$	41.	$75 \times 30=$	
20.	$22 \times 40=$	42.	$84 \times 300=$	
21.	$22 \times 400=$	43.	$87 \times 60=$	
22.	$33 \times 2=$	44.	$79 \times 800=$	

Lesson 7: Connect area models and the distributive property to partial products of the standard algorithm with renaming.

Number Correct: \qquad
Improvement: \qquad
Multiply by Multiples of 10 and 100

1.	$3 \times 10=$	
2.	$13 \times 10=$	
3.	$13 \times 100=$	
4.	$5 \times 10=$	
5.	$35 \times 10=$	
6.	$35 \times 100=$	
7.	$8 \times 10=$	
8.	$28 \times 10=$	
9.	$28 \times 100=$	
10.	$4 \times 10=$	
11.	$4 \times 2=$	
12.	$4 \times 20=$	
13.	$14 \times 10=$	
14.	$14 \times 2=$	
15.	$14 \times 20=$	
16.	$14 \times 100=$	
17.	$14 \times 200=$	
18.	$2 \times 3=$	
19.	$22 \times 3=$	
20.	$22 \times 30=$	
21.	$22 \times 300=$	
22.	$44 \times 2=$	

23.	$44 \times 20=$	
24.	$44 \times 200=$	
25.	$42 \times 10=$	
26.	$42 \times 20=$	
27.	$42 \times 100=$	
28.	$42 \times 200=$	
29.	$32 \times 30=$	
30.	$32 \times 300=$	
31.	$81 \times 2=$	
32.	$81 \times 20=$	
33.	$13 \times 3=$	
34.	$13 \times 4=$	
35.	$13 \times 40=$	
36.	$13 \times 400=$	
37.	$72 \times 30=$	
38.	$15 \times 300=$	
39.	$81 \times 600=$	
40.	$16 \times 40=$	
41.	$65 \times 30=$	
42.	$48 \times 300=$	
43.	$89 \times 60=$	
44.	$76 \times 800=$	

Lesson 7: of the standard algorithm with renaming.

A

Number Correct: \qquad

Multiply Decimals

1.	$3 \times 3=$	23.	$8 \times 5=$	
2.	$0.3 \times 3=$	24.	$0.8 \times 5=$	
3.	$0.03 \times 3=$	25.	$0.08 \times 5=$	
4.	$3 \times 2=$	26.	$0.06 \times 5=$	
5.	$0.3 \times 2=$	27.	$0.06 \times 3=$	
6.	$0.03 \times 2=$	28.	$0.6 \times 5=$	
7.	$2 \times 2=$	29.	$0.06 \times 2=$	
8.	$0.2 \times 2=$	30.	$0.06 \times 7=$	
9.	$0.02 \times 2=$	31.	$0.9 \times 6=$	
10.	$5 \times 3=$	32.	$0.06 \times 9=$	
11.	$0.5 \times 3=$	33.	$0.09 \times 9=$	
12.	$0.05 \times 3=$	34.	$0.8 \times 8=$	
13.	$0.04 \times 3=$	35.	$0.07 \times 7=$	
14.	$0.4 \times 3=$	36.	$0.6 \times 6=$	
15.	$4 \times 3=$	37.	$0.05 \times 5=$	
16.	$5 \times 5=$	38.	$0.6 \times 8=$	
17.	$0.5 \times 5=$	39.	$0.07 \times 9=$	
18.	$0.05 \times 5=$	40.	$0.8 \times 3=$	
19.	$7 \times 4=$	41.	$0.09 \times 6=$	
20.	$0.7 \times 4=$	42.	$0.5 \times 7=$	
21.	$0.07 \times 4=$	43.	$0.12 \times 4=$	
22.	$0.9 \times 4=$	44.	$0.12 \times 9=$	

Number Correct: \qquad
Improvement: \qquad
Multiply Decimals

1.	$2 \times 2=$	
2.	$0.2 \times 2=$	
3.	$0.02 \times 2=$	
4.	$4 \times 2=$	
5.	$0.4 \times 2=$	
6.	$0.04 \times 2=$	
7.	$3 \times 3=$	
8.	$0.3 \times 3=$	
9.	$0.03 \times 3=$	
10.	$4 \times 3=$	
11.	$0.4 \times 3=$	
12.	$0.04 \times 3=$	
13.	$0.05 \times 3=$	
14.	$0.5 \times 3=$	
15.	$5 \times 3=$	
16.	$4 \times 4=$	
17.	$0.4 \times 4=$	
18.	$0.04 \times 4=$	
19.	$8 \times 4=$	
20.	$0.8 \times 4=$	
21.	$0.08 \times 4=$	
22.	$0.6 \times 4=$	

23.	$6 \times 5=$	
24.	$0.6 \times 5=$	
25.	$0.06 \times 5=$	
26.	$0.08 \times 5=$	
27.	$0.08 \times 3=$	
28.	$0.8 \times 5=$	
29.	$0.08 \times 2=$	
30.	$0.08 \times 7=$	
31.	$0.9 \times 8=$	
32.	$0.08 \times 9=$	
33.	$0.9 \times 9=$	
34.	$0.08 \times 8=$	
35.	$0.7 \times 7=$	
36.	$0.06 \times 6=$	
37.	$0.5 \times 5=$	
38.	$0.06 \times 8=$	
39.	$0.7 \times 9=$	
40.	$0.08 \times 3=$	
41.	$0.9 \times 6=$	
42.	$0.05 \times 7=$	
43.	$0.12 \times 6=$	
44.	$0.12 \times 8=$	

\qquad

Convert Inches to Feet and Inches

1.	12 in. $=$		in.	23.	17 in. =	ft .	in.
2.	13 in. =	ft .	in.	24.	24 in. $=$	ft .	in.
3.	14 in. $=$		in.	25.	28 in. $=$	ft.	in.
4.	15 in. =	ft.	in.	26.	36 in. $=$	ft .	in.
5.	22 in. $=$	ft .	in.	27.	45 in. $=$	ft .	in.
6.	20 in. $=$	ft .	in.	28.	48 in. $=$	ft .	in.
7.	24 in. $=$	ft.	in.	29.	59 in. =	ft.	in.
8.	25 in. $=$	ft.	in.	30.	60 in. $=$	ft .	in.
9.	26 in. $=$	ft .	in.	31.	64 in. $=$	ft .	in.
10.	30 in. $=$	ft.	in.	32.	68 in. $=$	ft.	in.
11.	34 in. $=$	ft.	in.	33.	71 in. =	ft.	in.
12.	35 in. =	ft .	in.	34.	73 in. =	ft .	in.
13.	36 in. $=$	ft .	in.	35.	72 in. $=$	ft .	in.
14.	37 in. $=$	ft.	in.	36.	80 in. $=$	ft .	in.
15.	46 in. $=$		in.	37.	84 in. $=$	ft .	in.
16.	40 in. $=$	ft .	in.	38.	90 in. =	ft .	in.
17.	48 in. $=$	ft .	in.	39.	96 in. =	ft .	in.
18.	58 in. $=$		in.	40.	100 in. =	ft .	in.
19.	49 in. =		in.	41.	108 in. =	ft .	in.
20.	47 in. $=$		in.	42.	117 in. =	ft .	in.
21.	50 in. $=$		in.	43.	104 in. =	ft .	in.
22.	12 in. $=$		in.	44.	93 in. =	ft .	in.

Lesson 15:
Solve two-step word problems involving measurement conversions.

Number Correct: \qquad
Improvement: \qquad
Convert Inches to Feet and Inches

1.	120 in. =		in.	23.	16 in. =	ft .	in.
2.	12 in. =	ft .	in.	24.	24 in. $=$	ft .	in.
3.	13 in. =	ft.	in.	25.	29 in. =	ft .	in.
4.	14 in. $=$		in.	26.	36 in. $=$	ft.	in.
5.	20 in. $=$	ft.	in.	27.	42 in. $=$	ft .	in.
6.	22 in. =	ft.	in.	28.	48 in. $=$	ft .	in.
7.	24 in. =	ft.	in.	29.	59 in. =	ft.	in.
8.	25 in. =	ft.	in.	30.	60 in. $=$	ft .	in.
9.	26 in. =	ft.	in.	31.	63 in. $=$	ft .	in.
10.	34 in. =	ft.	in.	32.	67 in. $=$	ft.	in.
11.	30 in. =	ft.	in.	33.	70 in. =	ft .	in.
12.	35 in. =	ft.	in.	34.	73 in. =	ft.	in.
13.	36 in. =	ft.	in.	35.	72 in. =	ft .	in.
14.	46 in. =	ft .	in.	36.	77 in. =	ft .	in.
15.	37 in. =	ft.	in.	37.	84 in. $=$	ft .	in.
16.	40 in. $=$		in.	38.	89 in. $=$	ft.	in.
17.	48 in. $=$		in.	39.	96 in. =	ft .	in.
18.	49 in. =		in.	40.	99 in. =	ft.	in.
19.	58 in. =		in.	41.	108 in. =	ft.	in.
20.	47 in. =		in.	42.	115 in. =	ft .	in.
21.	$50 \mathrm{in} .=$		in.	43.	103 in. =	ft .	in.
22.	12 in. $=$		in.	44.	95 in. $=$	ft.	in.

Lesson 15: Solve two-step word problems involving measurement conversions.

A

Number Correct: \qquad

Divide by Multiples of 10 and 100

1.	$30 \div 10=$	
2.	$430 \div 10=$	
3.	$4,300 \div 10=$	
4.	$4,300 \div 100=$	
5.	$43,000 \div 100=$	
6.	$50 \div 10=$	
7.	$850 \div 10=$	
8.	$8,500 \div 10=$	
9.	$8,500 \div 100=$	
10.	$85,000 \div 100=$	
11.	$600 \div 10=$	
12.	$60 \div 3=$	
13.	$600 \div 30=$	
14.	$4,000 \div 100=$	
15.	$40 \div 2=$	
16.	$4,000 \div 200=$	
17.	$240 \div 10=$	
18.	$24 \div 2=$	
19.	$240 \div 20=$	
20.	$3,600 \div 100=$	
21.	$36 \div 3=$	
22.	$3,600 \div 300=$	

23.	$480 \div 4=$	
24.	$480 \div 40=$	
25.	$6,300 \div 3=$	
26.	$6,300 \div 30=$	
27.	$6,300 \div 300=$	
28.	$8,400 \div 2=$	
29.	$8,400 \div 20=$	
30.	$8,400 \div 200=$	
31.	$96,000 \div 3=$	
32.	$96,000 \div 300=$	
33.	$96,000 \div 30=$	
34.	$900 \div 30=$	
35.	$1,200 \div 30=$	
36.	$1,290 \div 30=$	
37.	$1,800 \div 300=$	
38.	$8,000 \div 200=$	
39.	$12,000 \div 200=$	
40.	$12,800 \div 200=$	
41.	$2,240 \div 70=$	
42.	$18,400 \div 800=$	
43.	$21,600 \div 90=$	
44.	$25,200 \div 600=$	

Number Correct: \qquad
Improvement: \qquad
Divide by Multiples of 10 and 100

1.	$20 \div 10=$	
2.	$420 \div 10=$	
3.	$4,200 \div 10=$	
4.	$4,200 \div 100=$	
5.	$42,000 \div 100=$	
6.	$40 \div 10=$	
7.	$840 \div 10=$	
8.	$8,400 \div 10=$	
9.	$8,400 \div 100=$	
10.	$84,000 \div 100=$	
11.	$900 \div 10=$	
12.	$90 \div 3=$	
13.	$900 \div 30=$	
14.	$6,000 \div 100=$	
15.	$60 \div 2=$	
16.	$6,000 \div 200=$	
17.	$240 \div 10=$	
18.	$24 \div 2=$	
19.	$240 \div 20=$	
20.	$6,300 \div 100=$	
21.	$63 \div 3=$	
22.	$6,300 \div 300=$	

23.	$840 \div 4=$	
24.	$840 \div 40=$	
25.	$3,600 \div 3=$	
26.	$3,600 \div 30=$	
27.	$3,600 \div 300=$	
28.	$4,800 \div 2=$	
29.	$4,800 \div 20=$	
30.	$4,800 \div 200=$	
31.	$69,000 \div 3=$	
32.	$69,000 \div 300=$	
33.	$69,000 \div 30=$	
34.	$800 \div 40=$	
35.	$1,200 \div 40=$	
36.	$1,280 \div 40=$	
37.	$1,600 \div 400=$	
38.	$8,000 \div 200=$	
39.	$14,000 \div 200=$	
40.	$14,600 \div 200=$	
41.	$2,560 \div 80=$	
42.	$16,100 \div 700=$	
43.	$14,400 \div 60=$	
44.	$37,800 \div 900=$	

\qquad

Divide Decimals by Multiples of 10

1.	$6 \div 10=$	-
2.	$6 \div 20=$	-
3.	$6 \div 60=$	-
4.	$8 \div 10=$	
5.	$8 \div 40=$	-
6.	$8 \div 20=$	-
7.	$4 \div 10=$	-
8.	$4 \div 20=$	-
9.	$4 \div 40=$	
10.	$9 \div 3=$	-
11.	$9 \div 30=$	-
12.	$12 \div 3=$	
13.	$12 \div 30=$	
14.	$12 \div 40=$	-
15.	$12 \div 60=$	
16.	$12 \div 20=$	
17.	$15 \div 3=$	-
18.	$15 \div 30=$	
19.	$15 \div 50=$	
20.	$18 \div 30=$	
21.	$24 \div 30=$.
22.	$16 \div 40=$	-

23.	$25 \div 50=$	
24.	$2.5 \div 50=$	
25.	$4.5 \div 50=$	
26.	$4.5 \div 90=$	
27.	$0.45 \div 90=$	
28.	$0.45 \div 50=$	
29.	$0.24 \div 60=$	
30.	$0.63 \div 90=$	
31.	$0.48 \div 80=$	-
32.	$0.49 \div 70=$.
33.	$6 \div 30=$	
34.	$14 \div 70=$.
35.	$72 \div 90=$	-
36.	$6.4 \div 80=$	
37.	$0.48 \div 40=$	
38.	$0.36 \div 30=$	
39.	$0.55 \div 50=$	
40.	$1.36 \div 40=$	
41.	$2.04 \div 60=$	
42.	$4.48 \div 70=$	
43.	$6.16 \div 80=$	
44.	$5.22 \div 90=$	

Number Correct: \qquad
Improvement: \qquad
Divide Decimals by Multiples of 10

1.	$4 \div 10=$	-
2.	$4 \div 20=$	-
3.	$4 \div 40=$	-
4.	$8 \div 10=$	-
5.	$8 \div 20=$	-
6.	$8 \div 40=$	-
7.	$9 \div 10=$	-
8.	$9 \div 30=$	-
9.	$9 \div 90=$	-
10.	$6 \div 2=$	-
11.	$6 \div 20=$	-
12.	$12 \div 2=$	-
13.	$12 \div 20=$	-
14.	$12 \div 30=$	-
15.	$12 \div 40=$	-
16.	$12 \div 60=$	-
17.	$15 \div 5=$	-
18.	$15 \div 50=$	-
19.	$15 \div 30=$	-
20.	$21 \div 30=$	-
21.	$27 \div 30=$	-
22.	$36 \div 60=$	-

23.	$25 \div 50=$	
24.	$2.5 \div 50=$	
25.	$3.5 \div 50=$	
26.	$3.5 \div 70=$	-
27.	$0.35 \div 70=$	
28.	$0.35 \div 50=$	-
29.	$0.42 \div 60=$	-
30.	$0.54 \div 90=$	-
31.	$0.56 \div 80=$	
32.	$0.63 \div 70=$	
33.	$6 \div 30=$	-
34.	$18 \div 90=$	-
35.	$72 \div 80=$	
36.	$4.8 \div 80=$	-
37.	$0.36 \div 30=$	
38.	$0.48 \div 40=$	
39.	$0.65 \div 50=$	-
40.	$1.38 \div 30=$	-
41.	$2.64 \div 60=$	
42.	$5.18 \div 70=$	
43.	$6.96 \div 80=$	
44.	$6.12 \div 90=$	

Exit Ticket Packet

Name \qquad Date \qquad

1. Find the products.
a. $1,900 \times 20$
b. $6,000 \times 50$
c. 250×300
2. Explain how knowing $50 \times 4=200$ helps you find 500×400.

Name
Date \qquad

Round the factors and estimate the products.
a. $656 \times 106 \approx$
b. $3,108 \times 7,942 \approx$
c. $425 \times 9,311 \approx$
d. $8,633 \times 57,008 \approx$

Name \qquad Date \qquad

1. Draw a model. Then, write the numerical expressions.

| a. The difference between 8 forty-sevens and |
| :--- | :--- |
| 7 forty-sevens |\quad b. 6 times the sum of 12 and 8

2. Compare the two expressions using $>,<$, or $=$.

| $62 \times(70+8)$ | $(70+8) \times 26$ |
| :--- | :--- | :--- |

Name \qquad Date \qquad
Solve using mental math. Draw a tape diagram and fill in the blanks to show your thinking.

Name \qquad Date \qquad

Draw an area model, and then solve using the standard algorithm.
a. $21 \times 23=$ \qquad

23
$\times 2$
b. $143 \times 12=$ \qquad
143
12
$\times \quad 1$

Name \qquad Date \qquad

Draw an area model. Then, solve using the standard algorithm. Use arrows to match the partial products from your area model to the partial products in the algorithm.
a. 78×42

78

$\begin{array}{r} \\ \times 42 \\ \hline\end{array}$
b. 783×42

783
$\begin{array}{r}78 \\ \times 4 \\ \hline\end{array}$

Name \qquad Date \qquad

Draw an area model. Then, solve using the standard algorithm.
a. 642×257

$$
\begin{array}{r}
642 \\
\times \quad 257 \\
\hline
\end{array}
$$

642
$\begin{array}{r}\times 207 \\ \hline\end{array}$

Name \qquad Date \qquad
Estimate the product first. Solve by using the standard algorithm. Use your estimate to check the reasonableness of the product.
a. 283×416
283
$\begin{array}{r}416 \\ \hline\end{array}$
\approx \qquad \times \qquad
$=$ \qquad
b. $2,803 \times 406$
2, 803
$\begin{array}{r}406 \\ \times \quad 4 \\ \hline\end{array}$
\approx \qquad \times \qquad
$=$ \qquad

Name \qquad Date \qquad
Solve.
Juwad picked 30 bags of apples on Monday and sold them at his fruit stand for $\$ 3.45$ each. The following week he picked and sold 26 bags.
a. How much money did Juwad earn in the first week?
b. How much money did he earn in the second week?
c. How much did Juwad earn selling bags of apples these two weeks?
d. Extension: Each bag Juwad picked holds 15 apples. How many apples did he pick in two weeks? Write an expression to represent this problem.

Name \qquad Date \qquad

1. Estimate the product. Solve using an area model and the standard algorithm. Remember to express your products in standard form.
a. $\quad 33.2 \times 21 \approx$ \qquad \times \qquad $=$ \qquad
b. $\quad 1.7 \times 55 \approx$ \qquad \times \qquad $=$ \qquad
2. If the product of 485×35 is 16,975 , what is the product of 485×3.5 ? How do you know?

Name \qquad Date \qquad

Use estimation and place value reasoning to find the unknown product. Explain how you know.

1. If $647 \times 63=40,761$
then
$6.47 \times 63=$ \qquad
2. Solve using the standard algorithm.
a. $\quad 6.13 \times 14$
b. $\quad 104.35 \times 34$

Name

Date \qquad

Estimate. Then, solve using the standard algorithm.
\qquad
a. $\quad 3.03 \times 402 \approx$ \times $=$
b. $667 \times 1.25 \approx$ \qquad \times \qquad $=$ \qquad

Name \qquad Date \qquad
Solve.
a. Convert pounds to ounces.
(1 pound = 16 ounces)

14 pounds $=$ \qquad $\times(1$ pound $)$
$=$ \qquad $\times 1$ \qquad ounces) 1 $=$ \qquad ounces
b. Convert kilograms to grams.
18.2 kilograms = \qquad $\times 1$ \qquad)
\qquad $\times(\ldots$
$=$ \qquad grams

Name
Date \qquad

1. Convert days to weeks by completing the number sentences.
35 days = \qquad $\times 1$ \qquad day)
$=$ \qquad $\times 1$ \qquad week)
$=$
$=$
2. Convert grams to kilograms by completing the number sentences.
4,567 grams = \qquad \times \qquad
$=$ \qquad \times \qquad
$=$
$=$

Name
Date \qquad

Solve.
To practice for an Ironman competition, John swam 0.86 kilometer each day for 3 weeks. How many meters did he swim in those 3 weeks?

Name
Date \qquad

Divide. Show your thinking.

a. $17,000 \div 100$	b. $59,000 \div 1,000$
c. $12,000 \div 40$	d. $480,000 \div 600$

Name \qquad Date \qquad

Estimate the quotient for the following problems.

Name \qquad Date \qquad

Estimate the quotients for the following problems.

Name
Date \qquad

Divide, and then check using multiplication.
a. $73 \div 20$
b. $291 \div 30$

Name
Date \qquad

Divide. Then, check with multiplication.
a. $78 \div 21$
b. $89 \div 37$

Name
Date \qquad

Divide. Then, check using multiplication.
a. $326 \div 53$
b. $192 \div 38$

Lesson 21: Divide two- and three-digit dividends by two-digit divisors with single digit quotients, and make connections to a written method.

Name
Date \qquad

Divide. Then, check using multiplication.
a. $413 \div 19$
b. $708 \div 67$

Name
Date \qquad

Divide. Then, check using multiplication.
a. $8,283 \div 19$
b. $1,056 \div 37$

Name \qquad Date \qquad

1. Divide.
a. $27.3 \div 3$
b. $2.73 \div 30$
c. $273 \div 300$
2. If $7.29 \div 9=0.81$, then the quotient of $7.29 \div 90$ is \qquad . Use place value reasoning to explain the placement of the decimal point.

Name
Date \qquad

Estimate the quotients.
a. $1.64 \div 22 \approx$
b. $123.8 \div 62 \approx$
c. $6.15 \div 31 \approx$

Name \qquad Date \qquad

1. Estimate. Then, divide using the standard algorithm and check.
a. $45.15 \div 21$
b. $14.95 \div 65$
2. We learned today that division expressions that have the same quotient and remainders are not necessarily equal to each other. Explain how this is possible. Lesson 26: Divide decimal dividends by two-digit divisors, estimating quotients, reasoning about the placement of the decimal point, and making

Name
Date \qquad

Divide.
a. $28 \div 32$
b. $68.25 \div 65$

Name \qquad Date \qquad

Solve this problem, and show all of your work.
Kenny is ordering uniforms for both the girls' and boys' tennis clubs. He is ordering shirts for 43 players and two coaches at a total cost of $\$ 658.35$. Additionally, he is ordering visors for each player at a total cost of $\$ 368.51$. How much will each player pay for the shirt and visor?

Name
Date \qquad

Solve.
Hayley borrowed $\$ 1,854$ from her parents. She agreed to repay them in equal installments throughout the next 18 months. How much will Hayley still owe her parents after a year?

Assessment Packet

Name \qquad Date \qquad

1. Fill in the chart.

\left.| Words | Expression | The Value of the Expression |
| :--- | :--- | :--- |
| a. 50 times the sum of 64 and 36 | | |
| b. Divide the difference between | | |
| 1,200 and 700 by 5 | | |$\right)$

2. Compare the two expressions using < , > , or = . For each, explain how you can determine the answer without calculating.
a. 100×8

$25 \times(4 \times 9)$
b. 48×12

50 twelves -3 twelves
c. 24×36

18 twenty-fours, doubled
3. Solve. Use words, numbers, or pictures to explain how your answers to Parts (a) and (b) are related.
a. $25 \times 30=$ \qquad b. $2.5 \times 30=$ \qquad tenths $\times 30=$ \qquad
4. Multiply using the standard algorithm. Show your work below each problem. Write the product in the blank.
a. $514 \times 33=$ \qquad b. $546 \times 405=$
5. For a field trip, the school bought 47 sandwiches for $\$ 4.60$ each and 39 bags of chips for $\$ 1.25$ each. How much did the school spend in all?
6. Jeanne makes hair bows to sell at the craft fair. Each bow requires 1.5 yards of ribbon.
a. At the fabric store, ribbon is sold by the foot. If Jeanne wants to make 84 bows, how many feet of ribbon must she buy? Show all your work.
b. If the ribbon costs $10 \$$ per foot, what is the total cost of the ribbon in dollars? Explain your reasoning, including how you decided where to place the decimal.
c. A manufacturer is making 1,000 times as many bows as Jeanne to sell in stores nationwide. Write an expression using exponents to show how many yards of ribbon the manufacturer will need. Do not calculate the total.

Name \qquad Date \qquad

1. Express the missing divisor using a power of 10. Explain your reasoning using a place value model.
a. $5.2 \div$ \qquad $=0.052$
b. $7,650 \div$ \qquad $=7.65$
2. Estimate the quotient by rounding the expression to relate to a one-digit fact. Explain your thinking in the space below.
a. $432 \div 73 \approx$ \qquad b. $1,275 \div 588 \approx$
3. Generate and solve another division problem with the same quotient and remainder as the two problems below. Explain your strategy for creating the new problem.

4. Sarah says that $26 \div 8$ equals $14 \div 4$ because both are " 3 R2." Show her mistake using decimal division.
5. A rectangular playground has an area of 3,392 square meters. If the width of the rectangle is 32 meters, find the length.

6. A baker uses 5.5 pounds of flour daily.
a. How many ounces of flour will he use in two weeks? Use words, numbers, or pictures to explain your thinking. ($1 \mathrm{lb}=16 \mathrm{oz}$)
b. The baker's recipe for a loaf of bread calls for 12 ounces of flour. If he uses all of his flour to make loaves of bread, how many full loaves can he bake in two weeks?
c. The baker sends all his bread to one store. If he can pack up to 15 loaves of bread in a box for shipping, what is the minimum number of boxes required to ship all the loaves baked in two weeks? Explain your reasoning.
d. The baker pays $\$ 0.80$ per pound for sugar and $\$ 1.25$ per pound for butter. Write an expression that shows how much the baker will spend if he buys 6 pounds of butter and 20 pounds of sugar.
e. Chocolate sprinkles cost as much per pound as sugar. Find $\frac{1}{10}$ the baker's total cost for 100 pounds of chocolate sprinkles. Explain the number of zeros and the placement of the decimal in your answer using a place value chart.
